

Vicerrectoráu d'Organización Académica Vice-rectorate for Academic Organization

APÉNDICE 1 GUIA DOCENTE PARA ASIGNATURAS DE TITULOS PROPIOS

1. Identificación de la asignatura

Nombre Sensores y actuadores			Código		
Titulación Máster en Internet de las Cosas		Centro EPI de Gijón			
Tipo:	Obligatoria X	Nº de créditos: 5			
	Optativa				
Periodo	Anual	Idioma: español			
Coordinador/s		Teléfono /email		Ubicación	
Pablo José Quintana Barcia		quintanapablo@	uniovi.es	EDO-3.2.15	
Profesorado		Teléfono /email		Ubicación	
David Gacio Vaquero		gaciodavid@uniovi.es EDO-3		EDO-3.1.22	
Juan Carlos Campo Rodríguez		985182427/cam	po@uniovi.es	EDO-3.2.12	

2. Contextualización

El Internet de las Cosas es un concepto que engloba múltiples tecnologías y hace referencia a la interconexión digital de objetos cotidianos con Internet. En todo proyecto del IoT, una fase esencial es la conexión del mundo físico con el digital llevada a cabo a través de los sensores y los actuadores. Los fundamentos de estos dispositivos y sus circuitos de acondicionamiento serán tratados en esta asignatura. La asignatura aborda desde la captura de la señal, sensores hasta los interfaces de comunicación sensor-procesador pasando por todos los elementos intermedios de esta cadena como el acondicionamiento de la señal y la conversión A/D.

3. Requisitos.

Haber cursado la asignatura de *Complementos de electrónica* o alternativamente poseer conocimientos básicos sobre:

- Teoría de circuitos, con capacidad de analizar circuitos sencillos de continua y alterna
- Electrónica analógica básica, desde circuitos sencillos con diodos y transistores hasta los bloques que usan amplificadores operacionales, considerados como ideales.

4. Objetivos.

El objetivo de la asignatura es conocer los conceptos y componentes de un sistema generalizado de instrumentación y medida, orientándose al estudio de los sensores y sus circuitos de acondicionamiento, e incluyendo los interfaces de comunicación entre el sensor y el dispositivo de procesamiento digital.

El alumno debe familiarizarse con la terminología y con los parámetros básicos de un sistema de medida de forma que obtenga criterios objetivos para definir el comportamiento del sistema y poseer la capacidad para comparar entre las alternativas que solucionan un problema determinado.

El estudiante también debe conocer los principales bloques de un sistema instrumental incluyendo: los sensores para la medida de variables de la naturaleza (resistivos, capacitativos, inductivos y generadores de señal), la amplificación, el filtrado y la conversión A/D.

Finalmente, debe conocer las principales técnicas de comunicación (buses) entre el sensor y el sistema de procesamiento (microcontrolador o plataforma digital del IoT).

- o Conocer la terminología y parámetros de un sistema de medida.
- o Capacidad para comparar entre sí las soluciones a un problema de medida
- Conocer los bloques fundamentales de un sistema de instrumentación: amplificación, filtrado y conversión A/D
- o Conocer las características de los sensores según el tipo de variable medida.
- o Capacidad para seleccionar el sensor más adecuado para una aplicación.
- Conocer los protocolos de comunicación digital sensor-procesador: buses SPI, I2C y serie asíncrono.

Vicerrectoráu d'Organización Académica Vice-rectorate for Academic Organization

5. Contenidos.

- 1. Amplificadores integrados, aislados y de transconductancia
- 2. Conversión analógico/digital y digital/analógica
- 3. Filtros activos analógicos y digitales
 - 3.1 Estructuras de filtros analógicos
 - 3.2 Transformada en z
 - 3.3 Filtros FIR e IIR
- 4. Interconexión analógica de componentes y transmisión de señales analógicas
- 5. Sensores analógicos vs digitales
- 6. Protocolos de comunicaciones digitales
 - 6.1 Serie asíncrono
 - 6.2 Zigbee
 - 6.2 I2C
 - 6.3 SPI
- 7. Sensores para medida de variables eléctricas
- 8. Sensores para medida de variables mecánicas
 - 8.1 Presencia y proximidad
 - 8.2 Posición y velocidad
- 8.3 Aceleración, vibración, fuerza y presión (piezoeléctricos, galgas, giróscopos, acelerómetros...)
 - 8.4 Flujo, caudal y nivel
- 9. Sensores de temperatura y actuadores térmicos
- 10. Sensores ópticos y de imagen.
- 11. Actuadores
 - 8.1 Eléctricos: motores (DC, paso a paso, BLDC)
 - 8.2 Relés, relés de estado sólido y contactores,
 - 8.3 Neumáticos: electroválvulas
- 12. Introducción a control digital de actuadores

6. Metodología y plan de trabajo.

El trabajo presencial del alumno se organiza en las siguientes categorías:

Clases expositivas: clases magistrales donde se exponen los conceptos básicos de la asignatura. **Prácticas de laboratorio**: se hará uso de las herramientas software y hardware, medios de laboratorio y equipos necesarios para la implementación, desarrollo y aplicación experimental de los conceptos teóricos transmitidos.

Trabajo autónomo: trabajo del alumno para realizar tareas tanto en grupo como individual, además del estudio de la materia. Se calcula que las clases expositivas o de prácticas llevan aparejada las horas del trabajo autónomo del alumno mostradas en la tabla siguiente para adquirir las destrezas básicas relativas a esta materia.

Se establece a continuación el número de horas requerido o estimado por tema:

Vicerrectoráu d'Organización Académica Vice-rectorate for Academic Organization

				1	ī
Temas	Clase Expositiva	Prácticas de laboratorio /campo /aula de informática/ aula de idiomas	Total	Trabajo grupo/individual	1 1 5, Horas totales
1	3	2	5	7,5	12,5
2	3	2 2	5	10	15
3	2	2	4	7	11
4	1	0	1	5	6
5	1	0	1	5	6
6	2	6	8	15	23 9
7	1	1	2	7	
8	2	1	3	7	10
9	1	1	2	6	8
10	1	1	2	6	8
11	2	2	4	7	11
12	0	0,5	0,5	5	5,5
Total	19	18,5	37,5	87,5	125

MODALIDADES	Horas	
Presencial	Clases Teóricas	19
	Clases Prácticas	18,5
No presencial	Trabajo en Grupo/Individuual	87,5
	Total	125

7. Evaluación del aprendizaje de los estudiantes.

La evaluación de la asignatura se realizará mediante trabajos individuales y/o en grupo. Si se considera oportuno, se podrá realizar además una prueba teórica de conocimientos de la asignatura.

Si se realizase una prueba teórica, esta pesaría un 25% de la nota final. Si no fuese así, la calificación obtenida en los trabajos representarían el 100% de la nota final.

8. Recursos, bibliografía y documentación complementaria.

- [1] Pérez García, M.A. Electrónica, Garceta Grupo Editorial, 2017. ISBN: 978-84-1622-875-1
- [2] Pérez García, M.A. Instrumentación Electrónica, Paraninfo 2014. ISBN: 9788428337021
- [3] Pérez García, M.A. Instrumentación Electrónica: 230 problemas resueltos, Garceta Grupo Editorial, 2017. ISBN: 978-84-15452-00-3
- [4] Coughlin R.F. , Amplificadores operacionales y circuitos integrados lineales, 5° Ed. Pearson 1999. ISBN: 970-17-0267-0
- [5] Schilling D.L., Belove C. Circuitos electrónicos discretos e integrados, 3° Ed. McGraw-Hill, 1989. ISBN: 84-481-0082-4

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

Vicerrectoráu d'Organización Académica Vice-rectorate for Academic Organization

[6] Nathan Ida. Sensors, Actuators, and Their Interfaces: A multidisciplinary introduction (Control, Robotics and Sensors), The Institution of Engineering and Technology (13 agosto 2016). ISBN-10: 1613530064